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Introduction

• In this topic, we will

– Introduce the wave equation

– Convert the wave equation to a finite-difference equation

– Discuss the additional initial conditions required

– Look at an implementation in MATLAB

– Look at four examples
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Wave equation

• The wave equation models the transfer of energy through waves

– The value c is the wave speed, 
which is equal to how quickly a wave can move 
through the medium

• If the heat transfer is restricted to one dimension,
this simplifies to

– This is the case for a guitar string or a Slinky® or an 
electromagnetic wave travelling down a wire

The wave equation
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Wave equation

• In one dimension, this says:

– The acceleration is proportional to the concavity of the wave in 
space

– If the concavity is locally zero (the wave is flat), there is no 
acceleration

The wave equation
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Finite-difference approximation

• In one dimension, we can substitute our two approximations:

• We can rewrite this as follows:

– Compare this with Taylor series:

The wave equation
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Finite-difference approximation

• Suppose we have a string:

– We could pluck that string and let go

– We have two boundary conditions: the end-points of the 
plucked string are fixed

• We have a second derivative with respect to time

– This requires not only an initial condition,
but also an initial velocity

– Often, the initial rate-of-change will be zero:

• We are plucking the string and just about to let go

The wave equation
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Finite-difference approximation

• We don’t know what u(x, t) is, so we will approximate it

– First, divide the interval [a, b] into nx sub-intervals,
each of width h

– Thus, xk = a + kh so and 

• Next, we cannot approximate the solution at each point in time,
so we will break time into steps

– Define tℓ = t0 + ℓt

• We will try to approximate u(xk, tℓ)

– As before, u(xk, tℓ) ≈ uk,ℓ

The wave equation
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Finite-difference approximation

• As with the heat equation, we require an initial state of the 
string or other medium being oscillated as well as boundary 
conditions

– For example, u0(x) ≈ sin(x)

The wave equation
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Finite-difference approximation

• So now what?

The wave equation
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Finite-difference approximation

• Let’s zoom in:

The wave equation
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Finite-difference approximation

• Let’s zoom in:

The wave equation
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Finite-difference approximation

• So now what?
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Restrictions

• There is one restriction to this algorithm:

– A reasonable strategy: given c and h, suppose we want to 
approximate the solution from t0 to tf

• We want                                 so 

• Thus, let’s ensure

• That is,  

The wave equation
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Implementation

function [xs, ts, Us] = wave( c, x_rng, t_rng, u_init, du_init,

u_bndry, u_dirichlet, nx )

h = (x_rng(2) - x_rng(1))/nx;

nt = ceil( 2.0*c*(t_rng(2) - t_rng(1))/h );

dt = (t_rng(2) - t_rng(1))/nt;

xs = linspace( x_rng(1), x_rng(2), nx + 1 )';

ts = linspace( t_rng(1), t_rng(2), nt + 1 );

Us = zeros( nx + 1, nt + 1 );

The wave equation
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Implementation
Us(2:nx, 1) = u_init( xs(2:nx) );

dirichlet = u_dirichlet( ts(1) );

boundary  =     u_bndry( ts(1) );

if dirichlet(1)

Us(1, 1) = boundary(1);

else

Us(1, 1) = -2.0/3.0*boundary(1)*h + 4.0/3.0*Us(2, 1) ...

- 1.0/3.0*Us(3, 1);

end

if dirichlet(2)

Us(nx+1, 1) = boundary(2);

else

Us(nx+1, 1) = 2.0/3.0*boundary(2)*h + 4.0/3.0*Us(nx, 1) ...

- 1.0/3.0*Us(nx-1, 1);

end

The wave equation

15



Implementation
Us(2:nx, 2) = Us(2:nx, 1) + du_init( xs(2:nx) )*dt ...

+ 0.5*(c*dt)^2*diff( Us(:, 1), 2 )/h^2;

dirichlet = u_dirichlet( ts(2) );

boundary  =     u_bndry( ts(2) );

if dirichlet(1)

Us(1, 2) = boundary(1);

else

Us(1, 2) = -2.0/3.0*boundary(1)*h + 4.0/3.0*Us(2, 2) ...

- 1.0/3.0*Us(3, 2);

end

if dirichlet(2)

Us(nx+1, 2) = boundary(2);

else

Us(nx+1, 2) = 2.0/3.0*boundary(2)*h + 4.0/3.0*Us(nx, 2) ...

- 1.0/3.0*Us(nx-1, 2);

end

The wave equation
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Implementation
for ell = 2:nt

Us(2:nx, ell + 1) = 2*Us(2:nx, ell) - Us(2:nx, ell-1)

+ (c*dt)^2*diff( Us(:, ell), 2 )/h^2;

dirichlet = u_dirichlet( ts(ell + 1) );

boundary  =     u_bndry( ts(ell + 1) );

if dirichlet(1)

Us(1, ell+1) = boundary(1);

else

Us(1, ell+1) = -2.0/3.0*boundary(1)*h + 4.0/3.0*Us(2, ell+1) ...

- 1.0/3.0*Us(3, ell+1);

end

if dirichlet(2)

Us(nx+1, ell+1) = boundary(2);

else

Us(nx+1, ell+1) = 2.0/3.0*boundary(2)*h + 4.0/3.0*Us(nx, ell+1) ...

- 1.0/3.0*Us(nx-1, ell+1);

end

end

end

The wave equation
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Example 1
• Consider this example:
>>  u1_in = @(x)( sin( pi*x ) );

>> du1_in = @(x)( zeros( size( x ) ) );

>>  u1_bn = @(t)( [0.0, 0.0]' );

>>  u1_di = @(t)( [true, true]' );

>> [x1s, t1s, U1s] = wave( 0.3, [0, 1], [0, 0.5], u1_in, du1_in, u1_bn, u1_di, 10 );

>> mesh( t1s, x1s, U1s );

The wave equation
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Example 1

• Recalling that nx = 10, we see how the wave oscillates over time 

The wave equation
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Example 2
• Consider this example:
>>  u2_in = @(x)( 4.0*(x <= 0.2).*x + (x > 0.2).*(1.0 - x) );

>> du2_in = @(x)( zeros( size( x ) ) );

>>  u2_bn = @(t)( [0.0, 0.0]' );

>>  u2_di = @(t)( [true, true]' );

>> [x2s, t2s, U2s] = wave( 0.3, [0, 1], [0, 0.5], u1_in, du2_in, u2_bn, u2_di, 10 );

>> mesh( t2s, x2s, U2s );

The wave equation
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Example 2

• The wave appears to reflect through the center, not vertically

The wave equation
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Example 2

• Try it again with 30 sub-intervals:
>> [x2s, t2s, U2s] = wave( 0.3, [0, 1], [0, 0.5], u1_in, du2_in, u2_bn, u2_di, 30 );

The wave equation
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Example 3

• Consider this example:
>>  u3_in = @(x)( zeros( size( x ) ) );

>> du3_in = @(x)( zeros( size( x ) ) );

>>  u3_bn = @(t)( [(t <= 1)*sin(pi*t), 0]' );

>>  u3_di = @(t)( [true, true]' );

>> [x3s, t3s, U3s] = wave( 1.0, [0, 3], [0, 9], u3_in, du3_in, u3_bn, u3_di, 30 );

>> mesh( t3s, x3s, U3s );

The wave equation
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Example 3

• The Slinky® travels back and forth between the fixed end points

The wave equation
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Example 4

• Consider this example:
>>  u4_in = @(x)( zeros( size( x ) ) );

>> du4_in = @(x)( zeros( size( x ) ) );

>>  u4_bn = @(t)( [(t <= 1)*sin(pi*t), 0]' );

>>  u4_di = @(t)( [t <= 1, false]' );

>> [x4s, t4s, U4s] = wave( 1.0, [0, 3], [0, 9], u4_in, du4_in, u4_bn, u4_di, 30 );

>> mesh( t4s, x4s, U4s );

The wave equation
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Example 4

• Note the water wave bounces back and forth between the two 
boundaries—the edges of a pool do not fix the water height

The wave equation
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Summary

• Following this topic, you now

– Understand how to approximate the wave equation with a
finite-difference equation

– Understand we require one more initial condition:
the initial speed

– Are aware of how to implement such a solution in MATLAB

– Have seen four examples including Dirichlet (fixed) and Neumann 
(fixed derivative) boundary conditions

The wave equation
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Colophon 

These slides were prepared using the Cambria typeface. Mathematical equations 
use Times New Roman, and source code is presented using Consolas.  
Mathematical equations are prepared in MathType by Design Science, Inc.

Examples may be formulated and checked using Maple by Maplesoft, Inc.

The photographs of flowers and a monarch butter appearing on the title slide and 
accenting the top of each other slide were taken at the Royal Botanical Gardens in 
October of 2017 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.
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Disclaimer

These slides are provided for the ECE 204 Numerical methods
course taught at the University of Waterloo. The material in it
reflects the author’s best judgment in light of the information
available to them at the time of preparation. Any reliance on these
course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility
for damages, if any, suffered by any party as a result of decisions
made or actions based on these course slides for any other purpose
than that for which it was intended.
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